向量
了解如何在 Redis 中使用向量字段和执行向量搜索
Redis 包括一个高性能向量数据库,可让您对向量嵌入执行语义搜索。您可以通过筛选文本、数字、地理空间和标签元数据来增强这些搜索。
要快速入门,请查看 Redis 矢量快速入门指南和 Redis AI 资源 Github 存储库。
概述
- 创建矢量索引:Redis 使用定义的架构(包括矢量字段和元数据)维护数据的二级索引。Redis 支持
FLAT
和HNSW
向量索引类型。 - 存储和更新向量:Redis 将向量和元数据存储在哈希或 JSON 对象中。
- 使用向量搜索:Redis 支持多种带有向量字段的高级查询策略,包括 k 最近邻 (KNN)、向量范围查询和元数据过滤器。
- 在运行时配置向量查询。
- 矢量搜索示例:探索涵盖不同使用案例和技术的多个矢量搜索示例。
创建向量索引
在为索引定义架构时,您可以包含一个或多个向量字段,如下所示。
语法
FT.CREATE <index_name>
ON <storage_type>
PREFIX 1 <key_prefix>
SCHEMA ... <field_name> VECTOR <algorithm> <index_attribute_count> <index_attribute_name> <index_attribute_value>
[<index_attribute_name> <index_attribute_value> ...]
请参阅完整的索引文档,了解其他字段、选项和说明的限制。
参数
参数 | 描述 |
---|---|
index_name |
索引的名称。 |
storage_type |
存储选项 (HASH 或JSON ). |
prefix (可选) |
键前缀,用于选择应为哪些键编制索引。如果省略,则默认为所有键。 |
field_name |
向量字段的名称。 |
algorithm |
向量索引算法 (FLAT 或HNSW ). |
index_attribute_count |
向量字段属性的数量。 |
index_attribute_name |
向量字段属性名称。 |
index_attribute_value |
Vector field 属性值。 |
FLAT 指数
选择FLAT
index:当您的数据集较小(< 1M 向量)或完美的搜索准确性比搜索延迟更重要时。
必需的属性
属性 | 描述 |
---|---|
TYPE |
向量类型 (BFLOAT16 ,FLOAT16 ,FLOAT32 ,FLOAT64 ).BFLOAT16 和FLOAT16 需要 v2.10 或更高版本。 |
DIM |
此字段中存储的向量嵌入的宽度或维数。换句话说,构成向量的浮点元素的数量。DIM 必须为正整数。用于查询此字段的向量必须具有与字段本身完全相同的维度。 |
DISTANCE_METRIC |
距离度量 (L2 ,IP ,COSINE ). |
例
FT.CREATE documents
ON HASH
PREFIX 1 docs:
SCHEMA doc_embedding VECTOR FLAT 6
TYPE FLOAT32
DIM 1536
DISTANCE_METRIC COSINE
在上面的示例中,名为documents
在具有 key 前缀的哈希上创建docs:
以及FLAT
vector 字段doc_embedding
具有三个 index 属性:TYPE
,DIM
和DISTANCE_METRIC
.
HNSW 指数
HNSW
或分层可导航小世界是一种近似最近邻算法,它使用多层图使向量搜索更具可扩展性。
- 最低层包含所有数据点,每个较高层包含一个子集,形成一个层次结构。
- 在运行时,搜索从上到下遍历每一层的图形,在下降到下一层之前找到局部最小值。
选择HNSW
索引类型,当您拥有较大的数据集(> 1M 文档)或搜索性能和可扩展性比完美的搜索准确性更重要时。
必需的属性
属性 | 描述 |
---|---|
TYPE |
向量类型 (BFLOAT16 ,FLOAT16 ,FLOAT32 ,FLOAT64 ).BFLOAT16 和FLOAT16 需要 v2.10 或更高版本。 |
DIM |
此字段中存储的向量嵌入的宽度或维数。换句话说,构成向量的浮点元素的数量。DIM 必须为正整数。用于查询此字段的向量必须具有与字段本身完全相同的维度。 |
DISTANCE_METRIC |
距离度量 (L2 ,IP ,COSINE ). |
可选属性
HNSW
支持许多要优化的附加参数
查询的准确性,同时牺牲性能。
属性 | 描述 |
---|---|
M |
图形层中每个节点的最大传出边(连接)数。在第 0 层上,最大连接数将为2 * M .较高的值可以提高准确性,但也会增加内存使用量和索引构建时间。默认值为 16。 |
EF_CONSTRUCTION |
在图形构建过程中要考虑的最大已连接邻居数。值越高,准确性越高,但也会增加索引构建时间。默认值为 200。 |
EF_RUNTIME |
KNN 搜索期间的最大最佳候选项。值越高,准确性越高,但也会增加搜索延迟。默认值为 10。 |
EPSILON |
设置范围查询搜索候选项的边界的相对系数。即,与查询向量的距离为radius * (1 + EPSILON) 可能会进行扫描,从而允许更广泛的搜索和更准确的结果,但会占用运行时间。默认值为 0.01。 |
例
FT.CREATE documents
ON HASH
PREFIX 1 docs:
SCHEMA doc_embedding VECTOR HNSW 10
TYPE FLOAT64
DIM 1536
DISTANCE_METRIC COSINE
M 40
EF_CONSTRUCTION 250
在上面的示例中,名为documents
在具有 key 前缀的哈希上创建docs:
以及一个HNSW
vector 字段doc_embedding
具有 5 个 index 属性:TYPE
,DIM
,DISTANCE_METRIC
,M
和EF_CONSTRUCTION
.
距离指标
Redis 支持三个流行的距离度量来衡量两个向量之间的相似度 $u$, $v$ $\in \mathbb{R}^n$,其中 $n$ 是向量的长度:
距离度量 | 描述 | 数学表示 |
---|---|---|
L2 |
两个向量之间的欧几里得距离。 | $d(u, v) = \sqrt{ \displaystyle\sum_{i=1}^n{(u_i - v_i)^2}}$ |
IP |
两个向量的内积。 | $d(u, v) = 1 -u\cdot v$ |
COSINE |
两个向量的余弦距离。 | $d(u, v) = 1 -\frac{u \cdot v}{\lVert u \rVert \lVert v \rVert}$ |
上述指标计算两个向量之间的距离,其中值越小,两个向量在向量空间中的距离就越近。
存储和更新向量
在创建索引时,<storage_type>
规定了矢量和元数据的结构化方式以及如何将其加载到 Redis 中。
散 列
例
HSET docs:01 doc_embedding <vector_bytes> category sports
<vector_bytes>
表示向量的底层内存缓冲区。将向量转换为字节的常用方法使用 redis-py 客户端库和 Python NumPy 库。
例
import numpy as np
from redis import Redis
redis_client = Redis(host='localhost', port=6379)
# Create a FLOAT32 vector
vector = np.array([0.34, 0.63, -0.54, -0.69, 0.98, 0.61], dtype=np.float32)
# Convert vector to bytes
vector_bytes = vector.tobytes()
# Use the Redis client to store the vector bytes and metadata at a specified key
redis_client.hset('docs:01', mapping = {"vector": vector_bytes, "category": "sports"})
Tip:
The vector blob size must match the dimension and float type of the vector field specified in the index's schema; otherwise, indexing will fail.
JSON
You can store or update vectors and any associated metadata in JSON using the JSON.SET
command.
To store vectors in Redis as JSON, you store the vector as a JSON array of floats. Note that this differs from vector storage in Redis hashes, which are instead stored as raw bytes.
Example
JSON.SET docs:01 $ '{"doc_embedding":[0.34,0.63,-0.54,-0.69,0.98,0.61], "category": "sports"}'
One of the benefits of JSON is schema flexibility. As of v2.6.1, JSON supports multi-value indexing.
This allows you to index multiple vectors under the same JSONPath.
Here are some examples of multi-value indexing with vectors:
Multi-value indexing example
JSON.SET docs:01 $ '{"doc_embedding":[[1,2,3,4], [5,6,7,8]]}'
JSON.SET docs:01 $ '{"chunk1":{"doc_embedding":[1,2,3,4]}, "chunk2":{"doc_embedding":[5,6,7,8]}}'
Additional information and examples are available in the Indexing JSON documents section.
Search with vectors
You can run vector search queries with the FT.SEARCH
or FT.AGGREGATE
commands.
To issue a vector search query with FT.SEARCH
, you must set the DIALECT
option to >= 2
. See the dialects documentation for more information.
KNN vector search
KNN vector search finds the top k nearest neighbors to a query vector. It has the following syntax:
Syntax
FT.SEARCH <index_name>
<primary_filter_query>=>[KNN <top_k> @<vector_field> $<vector_blob_param> $<vector_query_params> AS <distance_field>]
PARAMS <query_params_count> [$<vector_blob_param> <vector_blob> <query_param_name> <query_param_value> ...]
SORTBY <distance_field>
DIALECT 2
Parameters
Parameter
Description
index_name
Name of the index.
primary_filter_query
Filter criteria. Use *
when no filters are required.
top_k
Number of nearest neighbors to fetch from the index.
vector_field
Name of the vector field to search against.
vector_blob_param
The query vector, passed in as a blob of raw bytes. The blob's byte size must match the vector field's dimensions and type.
vector_query_params
(optional)
An optional section for marking one or more vector query parameters passed through the PARAMS
section. Valid parameters should be provided as key-value pairs. See which runtime query params are supported for each vector index type.
distance_field
(optional)
The optional distance field name used in the response and/or for sorting. By default, the distance field name is __<vector_field>_score
and it can be used for sorting without using AS <distance_field>
in the query.
vector_query_params_count
The number of vector query parameters.
vector_query_param_name
The name of the vector query parameter.
vector_query_param_value
The value of the vector query parameter.
Example
FT.SEARCH documents "*=>[KNN 10 @doc_embedding $BLOB]" PARAMS 2 BLOB "\x12\xa9\xf5\x6c" DIALECT 2
Use query attributes
Alternatively, as of v2.6, <vector_query_params>
and <distance_field>
name can be specified in runtime
query attributes as shown below.
[KNN <top_k> @<vector_field> $<vector_blob_param>]=>{$yield_distance_as: <distance_field>}
Vector range queries
Vector range queries allow you to filter the index using a radius
parameter representing the semantic distance between an input query vector and indexed vector fields. This is useful in scenarios when you don't know exactly how many nearest (top_k
) neighbors to fetch, but you do know how similar the results should be.
For example, imagine a fraud or anomaly detection scenario where you aren't sure if there are any matches in the vector index. You can issue a vector range query to quickly check if there are any records of interest in the index within the specified radius.
Vector range queries operate slightly different than KNN vector queries:
- Vector range queries can appear multiple times in a query as filter criteria.
- Vector range queries can be a part of the
<primary_filter_query>
in KNN vector search.
Syntax
FT.SEARCH <index_name>
@<vector_field>:[VECTOR_RANGE (<radius> | $<radius_param>) $<vector_blob_param> $<vector_query_params>]
PARAMS <vector_query_params_count> [<vector_query_param_name> <vector_query_param_value> ...]
SORTBY <distance_field>
DIALECT 2
Parameter
Description
index_name
Name of the index.
vector_field
Name of the vector field in the index.
radius
or radius_param
The maximum semantic distance allowed between the query vector and indexed vectors. You can provide the value directly in the query, passed to the PARAMS
section, or as a query attribute.
vector_blob_param
The query vector, passed in as a blob of raw bytes. The blob's byte size must match the vector field's dimensions and type.
vector_query_params
(optional)
An optional section for marking one or more vector query parameters passed through the PARAMS
section. Valid parameters should be provided as key-value pairs. See which runtime query params are supported for each vector index type.
vector_query_params_count
The number of vector query parameters.
vector_query_param_name
The name of the vector query parameter.
vector_query_param_value
The value of the vector query parameter.
Use query attributes
A vector range query clause can be followed by a query attributes section as follows:
@<vector_field>: [VECTOR_RANGE (<radius> | $<radius_param>) $<vector_blob_param>]=>{$<param>: (<value> |
$<value_attribute>); ... }
where the relevant parameters in that case are $yield_distance_as
and $epsilon
. Note that there is no default distance field name in range queries.
Filters
Redis supports vector searches that include filters to narrow the search space based on defined criteria. If your index contains searchable fields (for example, TEXT
, TAG
, NUMERIC
, GEO
, GEOSHAPE
, and VECTOR
), you can perform vector searches with filters.
Supported filter types
You can also combine multiple queries as a filter.
Syntax
Vector search queries with filters follow this basic structure:
FT.SEARCH <index_name> <primary_filter_query>=>[...]
where <primary_filter_query>
defines document selection and filtering.
Example
FT.SEARCH documents "(@title:Sports @year:[2020 2022])=>[KNN 10 @doc_embedding $BLOB]" PARAMS 2 BLOB "\x12\xa9\xf5\x6c" DIALECT 2
How filtering works
Redis uses internal algorithms to optimize the filtering computation for vector search.
The runtime algorithm is determined by heuristics that aim to minimize query latency based on several factors derived from the query and the index.
Batches mode
Batches mode works by paginating through small batches of nearest neighbors from the index:
- A batch of high-scoring documents from the vector index is retrieved. These documents are yielded only if the
<primary_filter_query>
is satisfied. In other words, the document must contain a similar vector and meet the filter criteria.
- The iterative procedure terminates when
<top_k>
documents that pass the filter criteria are yielded, or after every vector in the index has been processed.
- The batch size is determined automatically by heuristics based on
<top_k>
and the ratio between the expected number of documents in the index that pass the <primary_filter_query>
and the vector index size.
- The goal is to minimize the total number of batches required to get the
<top_k>
results while preserving the smallest batch size possible. Note that the batch size may change dynamically in each iteration based on the number of results that pass the filter in previous batches.
Ad-hoc brute force mode
- The score of every vector corresponding to a document that passes the filter is computed, and the
<top_k>
results are selected and returned.
- This approach is preferable when the number of documents passing the
<primary_filter_query>
is relatively small.
- The results of the KNN query will always be accurate in this mode, even if the underlying vector index algorithm is an approximate one.
The execution mode may switch from batch mode to ad-hoc brute-force mode during the run, based on updated estimations of relevant factors from one batch to another.
Runtime query parameters
Filter mode
By default, Redis selects the best filter mode to optimize query execution. You can override the auto-selected policy using these optional parameters:
Parameter
Description
Options
HYBRID_POLICY
Specifies the filter mode to use during vector search with filters (hybrid).
BATCHES
or ADHOC_BF
BATCH_SIZE
A fixed batch size to use in every iteration when the BATCHES
policy is auto-selected or requested.
Positive integer.
Index-specific query parameters
FLAT
Currently, there are no runtime parameters available for FLAT indexes.
HNSW
Optional runtime parameters for HNSW indexes are:
Parameter
Description
Default value
EF_RUNTIME
The maximum number of top candidates to hold during the KNN search. Higher values lead to more accurate results at the expense of a longer query runtime.
The value passed during index creation. The default is 10.
EPSILON
The relative factor that sets the boundaries for a vector range query. Vector candidates whose distance from the query vector is radius * (1 + EPSILON)
are potentially scanned, allowing a more extensive search and more accurate results at the expense of runtime.
The value passed during index creation. The default is 0.01.
Important notes
Important notes:
-
When performing a KNN vector search, you specify <top_k>
nearest neighbors. However, the default Redis query LIMIT
parameter (used for pagination) is 10. In order to get <top_k>
returned results, you must also specify LIMIT 0 <top_k>
in your search command. See examples below.
-
By default, the results are sorted by their document's score. To sort by vector similarity score, use SORTBY <distance_field>
. See examples below.
-
Depending on your chosen distance metric, the calculated distance between vectors in an index have different bounds. For example, Cosine
distance is bounded by 2
, while L2
distance is not bounded. When performing a vector range query, the best practice is to adjust the <radius>
parameter based on your use case and required recall or precision metrics.
Vector search examples
Below are a number of examples to help you get started. For more comprehensive walkthroughs, see the Redis vector quickstart guide and the Redis AI Resources Github repo.
KNN vector search examples
Return the 10 nearest neighbor documents for which the doc_embedding
vector field is the closest to the query vector represented by the following 4-byte blob:
FT.SEARCH documents "*=>[KNN 10 @doc_embedding $BLOB]" PARAMS 2 BLOB "\x12\xa9\xf5\x6c" SORTBY __vector_score DIALECT 2
Return the top 10 nearest neighbors and customize the K
and EF_RUNTIME
parameters using query parameters. See the "Optional arguments" section in FT.SEARCH command. Set the EF_RUNTIME
value to 150, assuming doc_embedding
is an HNSW
index:
FT.SEARCH documents "*=>[KNN $K @doc_embedding $BLOB EF_RUNTIME $EF]" PARAMS 6 BLOB "\x12\xa9\xf5\x6c" K 10 EF 150 DIALECT 2
Assign a custom name to the distance field (vector_distance
) and then sort using that name:
FT.SEARCH documents "*=>[KNN 10 @doc_embedding $BLOB AS vector_distance]" PARAMS 2 BLOB "\x12\xa9\xf5\x6c" SORTBY vector_distance DIALECT 2
Use query attributes syntax to specify optional parameters and the distance field name:
FT.SEARCH documents "*=>[KNN 10 @doc_embedding $BLOB]=>{$EF_RUNTIME: $EF; $YIELD_DISTANCE_AS: vector_distance}" PARAMS 4 EF 150 BLOB "\x12\xa9\xf5\x6c" SORTBY vector_distance DIALECT 2
To explore additional Python vector search examples, review recipes for the Redis Python
client library and the Redis Vector Library
.
Filter examples
For these examples, assume you created an index named movies
with records of different movies and their metadata.
Among the movies that have 'Dune'
in the title
field and year
between [2020, 2022]
, return the top 10 nearest neighbors, sorted by movie_distance
:
FT.SEARCH movies "(@title:Dune @year:[2020 2022])=>[KNN 10 @movie_embedding $BLOB AS movie_distance]" PARAMS 2 BLOB "\x12\xa9\xf5\x6c" SORTBY movie_distance DIALECT 2
Among the movies that have action
as a category tag, but not drama
, return the top 10 nearest neighbors, sorted by movie_distance
:
FT.SEARCH movies "(@category:{action} ~@category:{drama})=>[KNN 10 @doc_embedding $BLOB AS movie_distance]" PARAMS 2 BLOB "\x12\xa9\xf5\x6c" SORTBY movie_distance DIALECT 2
Among the movies that have drama
or action
as a category tag, return the top 10 nearest neighbors and explicitly set the filter mode (hybrid policy) to "ad-hoc brute force" rather than it being auto-selected:
FT.SEARCH movies "(@category:{drama | action})=>[KNN 10 @doc_embedding $BLOB HYBRID_POLICY ADHOC_BF]" PARAMS 2 BLOB "\x12\xa9\xf5\x6c" SORTBY __vec_score DIALECT 2
Among the movies that have action
as a category tag, return the top 10 nearest neighbors and explicitly set the filter mode (hybrid policy) to "batches" and batch size 50 using a query parameter:
FT.SEARCH movies "(@category:{action})=>[KNN 10 @doc_embedding $BLOB HYBRID_POLICY BATCHES BATCH_SIZE $BATCH_SIZE]" PARAMS 4 BLOB "\x12\xa9\xf5\x6c" BATCH_SIZE 50 DIALECT 2
Run the same query as above and use the query attributes syntax to specify optional parameters:
FT.SEARCH movies "(@category:{action})=>[KNN 10 @doc_embedding $BLOB]=>{$HYBRID_POLICY: BATCHES; $BATCH_SIZE: 50}" PARAMS 2 BLOB "\x12\xa9\xf5\x6c" DIALECT 2
To explore additional Python vector search examples, review recipes for the Redis Python
client library and the Redis Vector Library
.
Range query examples
For these examples, assume you created an index named products
with records of different products and metadata from an ecommerce site.
Return 100 products for which the distance between the description_vector
field and the specified query vector blob is at most 5:
FT.SEARCH products "@description_vector:[VECTOR_RANGE 5 $BLOB]" PARAMS 2 BLOB "\x12\xa9\xf5\x6c" LIMIT 0 100 DIALECT 2
Run the same query as above and set the EPSILON
parameter to 0.5
, assuming description_vector
is HNSW index, yield the vector distance between description_vector
and the query result in a field named vector_distance
, and sort the results by that distance.
FT.SEARCH products "@description_vector:[VECTOR_RANGE 5 $BLOB]=>{$EPSILON:0.5; $YIELD_DISTANCE_AS: vector_distance}" PARAMS 2 BLOB "\x12\xa9\xf5\x6c" SORTBY vector_distance LIMIT 0 100 DIALECT 2
Use the vector range query as a filter: return all the documents that contain either 'shirt'
in their type
tag with their year
value in the range [2020, 2022]
or a vector stored in description_vector
whose distance from the query vector is no more than 0.8
, then sort the results by their vector distance, if it is in the range:
FT.SEARCH products "(@type:{shirt} @year:[2020 2022]) | @description_vector:[VECTOR_RANGE 0.8 $BLOB]=>{$YIELD_DISTANCE_AS: vector_distance}" PARAMS 2 BLOB "\x12\xa9\xf5\x6c" SORTBY vector_distance DIALECT 2
To explore additional Python vector search examples, review recipes for the Redis Python
client library and the Redis Vector Library
.
Memory consumption comparison
Following is a Python+NumPy example of vector sizes for the supported vector types; BFLOAT16
, FLOAT16
, FLOAT32
, and FLOAT64
.
import numpy as np
#install ml_dtypes from pip install ml-dtypes
from ml_dtypes import bfloat16
# random float64 100 dimensions
double_precision_vec = np.random.rand(100)
# for float64 and float32
print(f'length of float64 vector: {len(double_precision_vec.tobytes())}') # >>> 800
print(f'length of float32 vector: {len(double_precision_vec.astype(np.float32).tobytes())}') # >>> 400
# for float16
np_data_type = np.float16
half_precision_vec_float16 = double_precision_vec.astype(np_data_type)
print(f'length of float16 vector: {len(half_precision_vec_float16.tobytes())}') # >>> 200
# for bfloat16
bfloat_dtype = bfloat16
half_precision_vec_bfloat16 = double_precision_vec.astype(bfloat_dtype)
print(f'length of bfloat16 vector: {len(half_precision_vec_bfloat16.tobytes())}') # >>> 200
Next steps
Vector embeddings and vector search are not new concepts. Many of the largest companies have used
vectors to represent products in ecommerce catalogs or content in advertising pipelines for well over a decade.
With the emergence of Large Language Models (LLMs) and the proliferation of applications that require advanced information
retrieval techniques, Redis is well positioned to serve as your high performance query engine for semantic search and more.
Here are some additonal resources that apply vector search for different use cases:
Continue learning with Redis University
See the Introduction to vector search course to learn more.
On this page