向量搜索
基于向量嵌入查询数据
本文很好地概述了如何使用 Redis Stack 执行向量搜索查询。请参阅 Redis 作为矢量数据库快速入门指南 有关将 Redis 作为矢量数据库的更多信息。您还可以在矢量参考文档中找到有关所有参数的更多详细信息。
对 vector field 的向量搜索查询允许您在向量空间中查找接近给定向量的所有向量。您可以查询给定半径内的 k 最近邻或向量。
本文中的示例使用具有以下字段的架构:
JSON 字段 | 字段别名 | 字段类型 | 描述 |
---|---|---|---|
$.description |
description |
TEXT |
以非结构化文本形式描述自行车 |
$.description_embeddings |
vector |
VECTOR |
机器学习模型从描述文本派生的向量 |
K-近东邻国 (KNN)
Redis 命令 FT.SEARCH 将索引名称、查询字符串和其他查询参数作为参数。您需要按以下方式传递最近邻的数量、向量字段名称和向量的二进制表示形式:
FT.SEARCH index "(*)=>[KNN num_neighbours @field $vector]" PARAMS 2 vector "binary_data" DIALECT 2
以下是此查询的更详细说明:
- Pre-filter(前过滤器):圆括号内的第一个表达式是 filter。它允许您决定在执行向量搜索之前应考虑哪些向量。该表达式表示考虑了所有向量。
(*)
- 下一步:箭头表示预筛选发生在向量搜索之前。
=>
- KNN 查询:表达式
[KNN num_neighbours @field $vector]
是参数化的查询表达式。参数名称由查询字符串中的前缀指示。$
- Vector binary data:您需要使用
PARAMS
要替换的参数$vector
替换为向量的二进制表示形式。价值2
表示PARAMS
后跟两个参数,则参数名称vector
和参数值。 - Dialect:向量搜索功能从查询 dialect 的第二个版本开始提供。
您可以阅读有关PARAMS
的论点。SEARCH 命令参考。
以下示例显示如何根据 3 辆自行车的描述嵌入以及使用字段别名vector
.结果将根据距离按升序返回。您可以看到,查询仅返回字段__vector_score
和description
.该领域__vector_score
默认存在。由于架构中可以有多个向量字段,因此向量分数字段名称取决于向量字段的名称。更改字段名称@vector
自@foo
,则 score 字段名称将更改为__foo_score
.
Note:
The binary value of the query vector is significantly shortened in the CLI example above.
Radius
Instead of the number of nearest neighbors, you need to pass the radius along with the index name, the vector field name, and the vector's binary value:
FT.SEARCH index "@field:[VECTOR_RANGE radius $vector]" PARAMS 2 vector "binary_data" DIALECT 2
If you want to sort by distance, then you must yield the distance via the range query parameter $YIELD_DISTANCE_AS
:
FT.SEARCH index "@field:[VECTOR_RANGE radius $vector]=>{$YIELD_DISTANCE_AS: dist_field}" PARAMS 2 vector "binary_data" SORTBY dist_field DIALECT 2
Here is a more detailed explanation of this query:
- Range query: the syntax of a radius query is very similar to the regular range query, except for the keyword
VECTOR_RANGE
. You can also combine a vector radius query with other queries in the same way as regular range queries. See combined queries article for more details.
- Additional step: the
=>
arrow means that the range query is followed by evaluating additional parameters.
- Range query parameters: parameters such as
$YIELD_DISTANCE_AS
can be found in the vectors reference documentation.
- Vector binary data: you need to use
PARAMS
to pass the binary representation of the vector.
- Dialect: vector search has been available since version two of the query dialect.
Note:
By default, FT.SEARCH
returns only the first ten results. The range query article explains to you how to scroll through the result set.
The example below shows a radius query that returns the description and the distance within a radius of 0.5
. The result is sorted by the distance.
On this page