使用 Redis Enterprise 进行 Uptrace
要从数据库和其他集群组件收集、查看和监控指标数据,您可以使用 OpenTelemetry Collector 将 Uptrace 连接到 Redis Enterprise 集群。
Uptrace 是一种开源 APM 工具,支持分布式跟踪、指标和日志。您可以使用它来监控应用程序并设置自动警报以接收通知。
Uptrace 使用 OpenTelemetry 从 Redis 等软件应用程序收集和导出遥测数据。OpenTelemetry 是一个开源可观测性框架,旨在为所有类型的可观测性信号(如跟踪、指标和日志)提供单一标准。
使用 OpenTelemetry Collector,您可以接收、处理遥测数据并将其导出到任何 OpenTelemetry 后端。您还可以使用 Collector 抓取 Redis 提供的 Prometheus 指标,然后将这些指标导出到 Uptrace。
您可以使用 Uptrace 来:
- 收集和显示 Admin Console 中不可用的数据量度。
- 使用由 Uptrace 社区维护的预构建控制面板模板。
- 设置自动警报并通过电子邮件、Slack、Telegram 等接收通知。
- 使用 OpenTelemetry 跟踪监控您的应用程序性能和日志。

安装 Collector 和 Uptrace
由于安装 OpenTelemetry Collector 和 Uptrace 可能需要一些时间,因此您可以使用 Redis Enterprise 集群附带的 docker-compose 示例。
下载 Docker 示例后,您可以在uptrace/example/redis-enterprise
目录中:
otel-collector.yaml
-配置/etc/otelcol-contrib/config.yaml
在 OpenTelemetry Collector 容器中。uptrace.yml
-配置/etc/uptrace/uptrace.yml
在 Uptrace 容器中。
您还可以按照以下指南从头开始安装 OpenTelemetry 和 Uptrace:
安装 Uptrace 后,您可以在 http://localhost:14318/ 访问 Uptrace UI。
抓取 Prometheus 指标
Redis Enterprise 集群在http://localhost:8070/
.您可以通过将以下行添加到 OpenTelemetry Collector 配置来抓取该终端节点:
# /etc/otelcol-contrib/config.yaml
prometheus_simple/cluster1:
collection_interval: 10s
endpoint: "localhost:8070" # Redis Cluster endpoint
metrics_path: "/"
tls:
insecure: false
insecure_skip_verify: true
min_version: "1.0"
Next, you can export the collected metrics to Uptrace using OpenTelemetry protocol (OTLP):
# /etc/otelcol-contrib/config.yaml
receivers:
otlp:
protocols:
grpc:
http:
exporters:
otlp/uptrace:
# Uptrace is accepting metrics on this port
endpoint: localhost:14317
headers: { "uptrace-dsn": "http://project1_secret_token@localhost:14317/1" }
tls: { insecure: true }
service:
pipelines:
traces:
receivers: [otlp]
processors: [batch]
exporters: [otlp/uptrace]
metrics:
receivers: [otlp, prometheus_simple/cluster1]
processors: [batch]
exporters: [otlp/uptrace]
logs:
receivers: [otlp]
processors: [batch]
exporters: [otlp/uptrace]
Don't forget to restart the Collector and then check logs for any errors:
docker-compose logs otel-collector
# or
sudo journalctl -u otelcol-contrib -f
You can also check the full OpenTelemetry Collector config here.
View metrics
When metrics start arriving to Uptrace, you should see a couple of dashboards in the Metrics tab. In total, Uptrace should create 3 dashboards for Redis Enterprise metrics:
-
"Redis: Nodes" dashboard displays a list of cluster nodes. You can select a node to view its metrics.
-
"Redis: Databases" displays a list of Redis databases in all cluster nodes. To find a specific database, you can use filters or sort the table by columns.
-
"Redis: Shards" contains a list of shards that you have in all cluster nodes. You can filter or sort shards and select a shard for more details.
Monitor metrics
To start monitoring metrics, you need to create metrics monitors using Uptrace UI:
- Open "Alerts" -> "Monitors".
- Click "Create monitor" -> "Create metrics monitor".
For example, the following monitor uses the group by node
expression to create an alert whenever an individual Redis shard is down:
monitors:
- name: Redis shard is down
metrics:
- redis_up as $redis_up
query:
- group by cluster # monitor each cluster,
- group by bdb # each database,
- group by node # and each shard
- $redis_up
min_allowed_value: 1
# shard should be down for 5 minutes to trigger an alert
for_duration: 5m
You can also create queries with more complex expressions.
For example, the following monitors create an alert when the keyspace hit rate is lower than 75% or memory fragmentation is too high:
monitors:
- name: Redis read hit rate < 75%
metrics:
- redis_keyspace_read_hits as $hits
- redis_keyspace_read_misses as $misses
query:
- group by cluster
- group by bdb
- group by node
- $hits / ($hits + $misses) as hit_rate
min_allowed_value: 0.75
for_duration: 5m
- name: Memory fragmentation is too high
metrics:
- redis_used_memory as $mem_used
- redis_mem_fragmentation_ratio as $fragmentation
query:
- group by cluster
- group by bdb
- group by node
- where $mem_used > 32mb
- $fragmentation
max_allowed_value: 3
for_duration: 5m
You can learn more about the query language here.
On this page